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Differential schemes have been constructed by using the integro-differential formulation of the 
equations of motion in stresses. The problem of periodic flow of the purely-viscous non-Newtonian 
liquid on a harmonically oscillating plate has been solved numerically for extremally high values 
of the Reynolds number. The velocity and stress fields as well as estimates of the flow enhancement 
E are given for the quasi-oscillatory regime, Fr ->- 00, for the pseudoplastic liquid with the extre
mally low flow index, n = 0·15. 

The flow of a layer of the power-law liquid, generated by an oscillating flat plate, 
can be taken as a model problem in the theory of vibrational flow enhancement1 •2 • 

The formulation of the problem consists of the equation of motion for the normalized 
fields of longitudinal velocity V(Y, T) and shear stress S(y, T): 

(1) 

the constitutive equation of the inelastic power-law liquid, 

(2) 

the kinematic boundary condition on oscillating plate 

v = Vo(T) for Y = 0 , (3) 

the dynamic boundary condition on free surface 

S = 0 for Y = H, (4) 

and the antiperiodicity conditions in the while volume of the liquid 

(5a, b) 
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Non-Newtonian Oscillatory Boundary Layer 1241 

This formulation of the boundary-value problem can be transformed to the parabolic 
problem in velocities 1 

or in stresses2 

OyS Iy=o = A(T) , S IY=H = 0, 

where both Vo(T) and A(T), 

are antiperiodic functions normalized by the condition 

max IA(T)I = 1 . 

(6) 

(7), (8) 

(9) 

(10), (11) 

(12) 

(13) 

A simple asymptotic solution, the so-called creeping asymptote3 , can be found 
for H ~ 1: 

S = A( T)( H - y), (14) 

H m + 1 (H y)m+l 
V = Vo(T) - [A(T)r - - • 

m + 1 
(15) 

with any functions Vo(T) or A(T). 

A corresponding asymptotic solution for H ~ 1, the so-called boundary-layer 
asymptote, is known only for the harmonic oscillations of constitutively linear 
liquids, e.g. for the Newtonian liquid, 

Vo(T) = cos T, A(T) = sin T, 

S = sin (T - Yj.J2 - rr:j4) exp ( - Yj.J2) , 

V = cos (T - Yj.J2) exp ( - y!.J2) . 

(16a, b) 

(17) 

(18) 

Analytical approximate approaches to the corresponding non-linear problems 
have not been succesfull even for purely-viscous pseudoplastic liquids4 ,s. Thus, 
a numerical treatment of the problem seems to be the only convenient way. 
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1242 Wein, Sobolik: 

In the theory of vibrational flow enhancement2, the problem of purely oscillatory 
boundary-layer flow, 1 ~ H, without a net steady component has straightforward 
application in the asymptotic estimate of the flow enhancement under quasi-oscilla
tory conditions, 1 ~ Fr. The ratio E of the mean flow rates on the oscillating and 
fixed plate for the same film ~hicknesses is given by2 

E ~ 1 + x( m, CX)) H - m F rm - 1 , (19) 

where 

(20) 

The problem can also serve as a model example for testing both the approximate 
analytic approaches and the computer programs developed for attacking other para
bolic ooundary-value problems in the theory of oscillatory flows of constitutively 
non-linear liquids. This last point has recently been gaining ground because many 
computer programs working well in the linear case, m = 1, or in the low-H regime, 
tend to lose the accuracy seriously or to break down totally in the non-linear and 
high-H cases6 . 

Difference schemes 7 are presented and tested here which converge to an anti
periodic solution even for the ext rem ally difficult cases m ~ 1, H ~ 1. 

DISCRETE REPRESENTATIONS, ERROR PARAMETERS 

The velocity and stress fields are represented by two-dimensional matrices of the cor
responding values 

(21a, b) 

in the mesh points (lj, Ti) 

Ti = To + (i - I) DT, i = 1, ... , 2M + 1 (22a) 

Yj=(j-I)DY, j=l, ... ,N (22b) 

with the constant but unequal steps on the space and time coordinates 

DY = LjN, DT = njM , (23a, b) 

see also Fig. ]. The mesh points are also considered on all edges of the rectangular 
domain, i.e. for Y1 = 0, YN+l = L ~ H, Tl = To, T 2M+ 1 = To + 2n. 

Parabolic nature of the problem enables to construct the periodic solution itera
tively, by searching for the initial profiles (BD of velocities (B = V) or stresses (B = s) 
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which fulfil the periodicity conditions, (BD = (BfM+ 1). The following norms, 

(24a) 

or 

(24b) 

can be introduced as quantitative measure of deviations from the periodicity or 
antiperiodicity conditions, resp. 

However, the error criteria based only on the initial and final profiles can con
siderably depend on the choice of the initial moment To. More realistic error criterion 
should therefore respect the deviations from the expected time symmetry over the 
whole domain of the field B, Y E <0; H), TE < To; To + 2rr). In particular, the norm 

(24e) 

seems to be an adequate error criterion for testing quantitatively the deviation from 
the antiperiodicity condition, Eqs (5a, b). 

It is also necessary to estimate the departure from the unknown exact solution. 
Besides the cumbersome method of halving the grid spacings, the methods of weighted 
residuals are widely used. Two types of the weighted residuals are in close relation 
to the rheodynamic problem under consideration - the relative defect of the instan
taneous momentum balance, 

8M(T) = IS(O, T) - W(T)l/max IS(O, T)I ' 

FIG. 1 

Finite difference schemes. a Explicite 
scheme, b semiimplicite scheme starting at 
the wall, c semiimplicite scheme starting 
at the surface, d implicite scheme. Full 
points - values known from the initial con
ditions or previous computations; hatched 
points - values known from the mirror 
symmetry about the surface, j = N; empty 
points - computed values 
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1244 Wein, Sobolik: 

and the relative defect of the total energy balance, 

(26) 

For the exact solution, the quantities eM(T), eE should be zero as the non-zero quan
tities, 

S(O, T) = [ -Oyvly=o]n, 

WeT) = S: OTV(T, Y) dY, 

t/lwork = - < Vo(T) S(O, T» , 

t/ldiss = f:<IS(y, T)lm+l> dY, 

(27) 

(28) 

(29) 

(30) 

represent the instantaneous wall stress, the instantaneous inertia force, the total work 
done by the oscillating plate, and the total dissipated mechanical energy, respec.tively. 

FINITE-DIFFERENCE REPRESENTATION IN VELOCITIES 

The constitutive non-linearity of the pseudoplastic type, n < 1 or m > 1, introduces 
essential difficulties into the solution of the problem represented by the finite-diffe
rence equations in velocities. The well-known explicite difference scheme is con
sidered here as an illustrative example: 

Vi+ 1 Vi + ([Vi yi]R [v.I v.i ]D) j = j IX j+l - j - j - j-l , 2~j~N-1. (31) 

In these equations, the velocity values in the inner mesh points, vt 1, are the only 
unknown parameters. All values (Vi)' j = 1, ... , N, are known from the trial initial 
conditions and previous calculations. The value vI + 1 is given by the boundary con
dition at the harmonically oscillating plate, 

(32) 

By taking into consideration the mirror symmetry at the free surface, V~ + 1 = V~-1> 
the Eq. (31) for j = N can be simplified to the form 

TJi+l Iii 2 [ui Iii ]D 
~N = ~N - IX ~N - ~N-l • (33) 

This explicite scheme leads to the discrete approximation of the velocity field with 
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a satisfactory accuracy only for the linear problem, n = 1, if the well-known stability 
conditionS, a < 1/2, is kept. On the other hand, the explicite scheme fails even in 
weakly non-linear cases, n ~ 0'8, at moderate Reynolds numbers, H ~ 2. 

The origin of this failure becomes more obvious by considering the equation of 
motion in the alternate form 

(34) 

The corresponding quasi-linear explicite scheme, 

. + 1 . *(' .. ) l'j' = l'j' + aij l'j'+ 1 - 2l'j' + l'j'-l , (35) 

. h * contains t e parameter aij' 

(36) 

which becomes infinite in the points (Y, T) for which Oy V = O. The existence of such 
singular points and of the corresponding singular lines Y = Y.~(T) follows from both 
the boundary conditions at Y = H and the antiperiodicity conditions with the half
-period il T = n. In particular, there exists subdomain Y c (YH, H) within which the 
scheme (35) is globally unstable due to the inequality ai,i > 1/2. 

The global instability can be suppressed by using the semiimplicite schemes 7 • 

see also Fig. 1 b. Only immaterial local instabilities appear in the region Y E (YH , H) 
manifesting themselves by slight oscillations of the velocity values about the cor
responding smoothed courses. Nevertheless, the existence of singular lines indicates 
a possible appearance of considerable discretization errors for any finite-difference 
representation of the problem in velocities, at least in a close neighbourhood of the 
singular lines. 

The accuracy of discrete approximation based on the semi-implicite scheme was 
tested by using Kutta's method of halving the grid spacings as well as by computing 
the weighted residuals eM, eE• The differences between values u .. :n in the common 
mesh points of the grids with (N, M) = (10,50) and (N, M) = (20, 100) were found 
to be negligible in all tested cases, n ~ 0·5. On the other hand, the momentum defect 
eM attained values about 0'1 + 0·5 in the neighbourhood of the singular points. 
Oy V !y=o = 0, and the energy defect eE was not less than 0·05. It can be concluded 
from these results that the weighted residuals provide more strict (and time saving) 
test of the accuracy than Kutta's method. 

Similar results have been obtained by using the implicite schemes of Crank-Nicol
son type. A question of actual accuracy of the velocity fields determined by solving 
the problem in velocities has been answered only by considering the same problem 
in stresses. 
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FINITE-DIFFERENCE REPRESENTATION IN STRESSES 

Preliminary numerical experiments have shown that neither explicite schemes in 
stresses, 

(37) 

with 

2f3 = OT/Oy2 , (38) 

nor corresponding semiimplicite schemes warrant results with higher accuracy than 
current methods of solving the problem in velocities. On the contrary, these schemes 
have shown certain instabilities even in the cases H ~ 1, i.e. in regimes for which the 
semiimplicite schemes in velocities were stable. The cause of these instabilities is 
apparent from the following alternate expression of the explicite scheme, 

(39) 

(40) 

which is a finite-difference representation of the equation of motion in the form 
OTS = o~yS/(mlslm-l). It holds S -+ 0 and f3~ -+ r:f) for Y -+ H. The transition from 
the quasi-linear scheme (39) to the scheme (37) does not improve the stability, in con
trast with the formulation in velocities. 

These instabilities have manifested themselves by strong oscillations on stress-time 
dependence far from the wall even if the implicite scheme of Crank-Nicolson type 
has been used. This defect has been suppressed by introducing an approximate analy
tical representation, the so-called creeping asymptote (14), of the stress field in the 
region far from the wall, 

S(Y, T) ~ S(L, T). (H - Y)/(H - L) for YE (L, H), (41) 

with one unknown parametric function S(L, T). It can be shown by an approach 
analogous t0 3 that the creeping asymptote is a satisfactory approximation (relative 
errors of the instantaneous stresses less than 1 %) for such a value of L which fulfils 
the inequality 

0·8 > Re*(L) == (H - L)2 max IS(L, T)lm-l . (42) 

The actual domain (Y, T) for solving the problem is diminished to an interior 
region at the wall, 0 < Y < L, by using the analytical extrapolation (41) of stress 
profiles. The parametric function S(L, T) should be determined by considering the 
new homogeneous boundary conditions of the 3rd kind, 
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(H - L) OyS !H=L + S !V=L = ° . (43) 

Other group of difficulties arises at solving the problem in stresses due to the 
necessity to compute the stress gradients appearing in the both boundary conditions 
(10) and (43). The computation of the derivatives of a field on the boundary of the 
domain is notoriously known as a difficult problem suppressing considerably the 
attainable accuracy (errors about 20% of actual boundary values are typical). Dimi
nishing the steps D Y does not result in a satisfactory approach because of the necessity 
to hold P < 1/2 and, in effect, to diminish DT,...., Dy2. Such a thinning of the grid 
results in an unacceptable growth of the computational time, especially if the implicite 
schemes are used. 

Decisive improvement of the approaches used until now was achieved by intro
ducing discrete representations based on the integro-differential formulation of the 
equation of motion. The following integro-differential formulation 

S(Y, T) = (H - Y) A(T) - 0TQ(Y, T) , (44) 

whcre 

Q(y, T) = f: V(z, T) dz = 

= f:(H - Y) [S(z, T)Jrn dz + f:(H - z) [S(z, T)Jrn dz , (45) 

can be found by integrating Eq. (1) and using the all boundary conditions. The only 
supplementary constraint to the formulation (44) is the antiperiodicity condition. 

The second integral on the r.h.s. of Eq. (45) can be expressed in the following way, 

f:(H - z) [S(z, T)Jrn dz = 

= f\H - z) [S(z, T)r dz + (H - L)2 [S(L, T)Jrn , 
v m + 2 

(46) 

if the linear extrapolation (41) is introduced in the outer creeping region. In parti
cular, the Eq. (44) is reduced to the form of the total macroscopic momentum 
balance, 

S(O, T) = H A(T) - 0TQ(O, T), (47) 

and of the macroscopic momentum balance for the outer creeping region, 

S(L, T) = (H - L) A(T) - oTQ(L, T) , (48) 
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with the following simplified expressions of the total instantaneous flow rate, 

Q(O, T) = fL(H - z) [S(z, TJr dz + (H - L)2 [S(L, TJ]m, (49) 
o m + 2 

and the instantaneous flow rate in the outer region, 

Q(L, T) = f\H - L) [S(z, T)]m dz + (H - L)2 [S(L, T)]m . (50) 
o m + 2 

The Eqs (47), (48) are used as substitutes for the undesirable boundary conditions 
(10), (43) of the 2nd and 3rd kind. 

The corresponding finite-difference scheme is based on the common discrete repre
sentations of integro-differential operators in the sense of Crank and Nicolson8 , i.e. 
with the localization in the hypothetical central mesh point (Yj, Ti + 1/2) of a symmetri
cal cell with the six actual mesh points: 

etc. 

D~ySI~+1/2 = (S~!~ - 2S~+1 + S~~D/(2 Dy2) + 

+ (SJ+l - 2SJ + SJ_d/(2Dy2), 

(51) 

(52) 

The integrals Q in Eqs (49), (50) are represented in an analogous way, i.e. as the 
arithmetical averages of the integrals computed on the profiles Ti and TI + 1. The 
proper integration operator over an even number of intervals is represented by 
Simpson's quadrature formula: 

fL (H - Y)f(Y) dY + (H - L)2 f(L) = Dy2 f WJkf(Yk) , (53) 
o In + 2 k=l 

(H - L)fLf(y) d Y + (H - Lf f(L) = Dy2 £ WWd( Yk), (54) 
o m+2 k=l 

where the coefficients WJk , WWk are given by: 

for k = I, ... , N - I 

(55) 
for k = N, 
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for k = 1, ... , N - 1 

(56) 
for k = N. 

The constants H Y, HL depend on the dividing of the interval Y E (0; H) onto the 
inner (proper) and outer (linear) parts: 

HY = (N - 1) H/L, HL = (N - 1) (H - L)/L, (57a, b) 

the constants Wk are the common Simpson's coefficients: 

{ 
1/3; for k = 1, or k = N 

wk = 2/3: for k: 3, 5, ... , N - 2 
4/3, for k - 2, 4, ... , N - 1 . 

(58) 

This discrete representation results in the system of N non-linear algebraic equa
tions. The common discrete representations of the differential formulation, Eq. (9), 
are included here for the inner mesh points, j = 2, ... , N - 1: 

In the boundary mesh points, j = 1 and j = N, the forementioned macroscopical 
balances of momentum in the discrete representation 

N N 

I WJk[sL+I]m + f3S\+1 = I WJk[sUm - f3S\ + 2f3H A(Ti+1/1), (60) 
k = I k= I 

N N 

I WWk[S~+ I]m + f3S~+ 1 = IWWk[s~]m - f3S~ + 2f3(H - L) A(Ti+ 1/2), (61) 
k=1 k=l 

are included. 

In contrast to the tridiagonal Jacobian matrix typical for the Crank-Nicolson 
scheme, the considered finite difference scheme results in a system of equations with 
non zero off-diagonal elements in the Jacobian. An essential advantage of this 
scheme* consists in the identical fulfilling of the total momentum balance, 8M(T) = O. 

It follows from the analytical estimate of the discretization errors that the integral 
formulas (60), (61) have errors of the order 0(DT2 + Dy5), while the Crank-Nicol
son scheme (59) includes errors of the order 0(DT2 + Dy2). Thus, it appears mea-

* (it will be called BISS-scheme in the following text) 
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ningfull to increase the accuracy of finite-difference representations by accepting 
schemes which are based entirely on the integro-differential form (44) of the equations 
of motion. 

The main problem which should be overcome in constructing the corresponding 
finite-difference scheme lies in adequate discrete representation of the integrals 
Q(Y, T) in the points Yj with the even indexes j. The following quadrature formulas 
have been chosen on the basis of numerical experiments with the integrand fez) = 
= (a + z)m: 

fez) dz = - (5fj + 8fj+l - f j +2) + --f"'(O, fYJ + ' OY (Oy)4 

~ 12 24 

fez) dz = - (-Ij + 8.f j+ 1 -+- 5fj+2) - --f (1;;). JY J+2 OY . (Oy)4 '" 

YJ+I 12 24 
(62a,b) 

Here, 'E (lj; lj+2) and f'" is a symbol for the 3cd derivative of the function j. The 
total of the both expressions in ( 62a, b) results in a well-known Simpson's formula: 

(62 c) 

in which the discretization error is proportional to the 5th derivative of the functionj. 
Even so, the suggested formulas ( 62a, b) are by an order more accurate than the 
trapezoidal formula with the error of the order (0 y)3 f"(0/6. 

The quadrature formulas suggested result in the following discrete representation 
of the integration operator in Eq. (45): 

(63) 

where 

Ajk = {Cjk .- 1/12; for evenj and k = j + 1 
Cjk , for other j, k , 

(64) 

and 

{ 
(N ~ H + 1 _ j) wk ; for 1 ~ k ~ j 

c" ~ C ~II + 1 - k) w,; [0' j:1i. k:1i. N. 

(65) 
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Numerical tests of the formula (54) for fez) = zm, mE (1; 10), H = L = 2, N = 20 
have shown that the errors introduced by the discrete representation of the integral 
operator does not exceed 0·05% for Y!L < 0·8 and 0·5% for 0·8 < Y!L < 1. Such 
an accuracy should be satisfactory for the majority of the finite-difference appro
ximations. 

The corresponding discrete representation of the considered boundary-value 
problem is constructed analogously with the BISS-scheme. The resulting system of the 
non-linear algebraic equations in the new SNOW-scheme has the following structure 

N N 

LBBjk[s~+l]m + pSj+l = LBBjk[s~]m - psj + 2P(H - lj)A(Ti+1/2) , (66) 
k=l k=l 

where 

{ 

Ajk ; 

BBjk = HL2 
A·k + --_. J ') , m +_ 

for k = 1, ... , N - 1 

(67) 
for k = N. 

The Jacobian of this system contains no zero elements. Therefore it should be ex
pected that the treating of this system will be more time consuming than in the case 
of the BISS-scheme. 

RESULTS AND DISCUSSIONS 

The main reason for developing new finite-difference schemes based on the equation 
of motion in stresses lies in the uncertain accuracy of the results obtained by solving 
the problem in velocities. Our initial conjecture about the origin of considerable 
errors of the solution in velocities is documented in Fig. 2. The large defects of the 
macroscopical balances of momentum and energy have origin in the errors introduced 
by computing the velocity gradients at the wall, i.e. on the boundary of the domain. 

The both new finite-difference schemes, BISS and SNOW, ensure the identical 
fulfilment of the instantaneous macroscopical balance of momemtun, 8M(T) = 0, 
within accuracy of the order 0(DT2 + DT5 ). Thus, only the following error para
meters remain to be tested: 

(i) The accuracy of the iterative solution of the N non-linear equation system in 
every time step, which should fulfil the condition 

(68) 

(ii) The antiperiodicity of the solution characterized by the parameter 8p • 
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(iii) The extent of the oscillations on the stress-time dependencies at Y = const. 
(only qualitative test). 

(iv) The accuracy of the total energy balance, which is characterized by the relative 
defect SE' 

All the results discussed below have been obtained by realizing the schemes BISS 
and SNOW in the FORTRAN language on a computer Ee 1033. The optimization 
procedure BSOLVE for solving the difficult systems of non-linear equation has been 
taken over from the literature9 • All computations have been conducted in simple 
arithmetics. 

The main problem in large-scale computations with a systematical series of the 
input parameters consisted in a considerable time consumption on the integration 
over the single period, AT = 27t. Typical relevant data are presented in Table I. 

The starting stress profiles (S}) were either supplied as the input data or taken over 
from the previous integration. The acceptable periodicity condition, speS) < 0'005, 
was obtained after integrating over 2 + 3 periods in the case of very good initial 
trials. The anti periodicity condition, siS) < 0'005, was however attained by far 
later, after 5 + 10 periods. Thus, the acceleration of the iterative process by the relaxa
tion-type estimate of the new starting profile 

(S~) = J(S~M+ 1 
J new "'Z J 

SM+l) 
- j old (69) 

can substantially reduce the total computational time. 
The appearance of the local oscillations of stresses around the smoothed stress-time 

dependence presented some difficulties in testing the periodicity and antiperiodicity 
conditions. The effect of decreasing grid spacings on the extent of these local oscilla
tions is demonstrated in Fig. 3 for rather unfavorable combination of parameters 

/ " 

1'0 

s 

0'5 

0·5 
T/:Jt' 

FIG. 2 

Time course of stresses at the wall (data for 
N= 20, M= 50, H= L= 10, n= 0'15, 
SNOW-scheme). Full line - actual course; 
dot-and-dashed lines - courses computed 
by numerical differentiation of the velocity 
profiles (the number of points on the line 
corresponds to the number of mesh points 
laken for the differentiation); hatched area
the region of strong local oscillations 
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TABLE I 

Typica) accuracies and time consumptions 

Scheme til N 

BISS 10- 2 10 
10- 2 10 
10- 2 20 
10- 3 20 
10- 3 20 
10- 3 20 

SNOW 10- 3 10 
10- 3 10 
10- 3 20 
10- 3 20 
10-4 20 
10-4 

Fl(;. 3 

Effect of the time step on the tiI:ne course of 
stresses. Results of the computation using 
BISS-scheme for 11 = 0·15, H = L = 10, 
N = 20. Time courses given for Y = 1 and 
Y = 5. Full points - N = 20, empty 
points - N = 50, dotted line - N = 1 000. 
The computations executed for the common 
starting stress profil in the time To = 0·4 It 

20 
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M tE t (min) 

20 0·006 1 
100 0·004 5 
20 0·002 5 
20 0·002 10 
50 0·003 20 

100 0·003 20 

20 0·005 5 
50 0·005 10 
20 0·001 15 
50 0·000 20 
50 0·000 20 

100 0·000 30 

FIG. 4 

Velocity field, the same run as in Fig. 2. 
Time courses of velocities are given for the 
following distances to the wall: 0 - 0·5 -
1·0- 2·0- 5·0 (curves 1- 2- 3- 4- 5) 
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(m, H, L) and in the region of the most pronounced oscillation, i.e. in the region of 
rather stepwise change of stresses. It is apparent from Figs 3 and 5 that the values 
of stresses oscillate about the correct smoothed courses. Therefore, even the com
putations with relatively coarse grids result in acceptable accuracy of the macroscopic 
parameters to. In general, it can be concluded that the macroscopic parameters of the 
solution obtained for N = 10, M = 50, Bit = 0'001, Bp = 0·005 have not been 
changing more than about 0'5% of the actual values if thinner grids and more strict 
accuracy criteria have been supplied. The main effect of thinning the network con
sisted in smoothing the actual discrete representation of both the stress and velocity 
fields towards the courses predicted by the ad hoc smoothing procedure. Typical 
smoothed courses of the stresses and velocities show remarcable effect of the consti
tutive nonlinearity on the departure of these courses from the harmonic ones which 
are typical for the linear case, m = t (see Figs 4 and 5). 

It was rather surprising finding that the velocity fields determined more than ten 
years ag06 by the fast semiimplicite method are practically identical with the new 
results. In particular, the time courses of velocities depicted in Fig. 4 are identical for 
the all numerical methods used, within the limits of the graphical distinguishability. 

1,----

12 

s 

10 

FIG. 5 

Time courses of stresses, the same run as in 
Fig. 2. The label numbers 1- 10 give the 
distances to the wall. The curves 11 and 12 
correspond to Y = 0 and Y = 0'5, resp. 
The hatched area distinguishes the region 
of local instabilities with low accuracy of 
results 

s 

y 10 

FIG. 6 

Instantaneous stress profiles, the same run 
as in Fig. 2. Curves 1 - 2 - 3 - 4 - 5 - 6 
correspond to the moments TIp; = 0'9 -
1'3 - 1·4 - 1·48 - 1·50 - 1·52; the hatched 
area corresponds to the interval TIp; E (1. 50; 
1· 52) of the jump-like changes of stresses, 
compare with Fig. 5 
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It should be pointed out that the example considered here is one of the most difficult 
cases treated with the extreme non-linearity, In = 6·67 and the boundary-layer 
regime, H = 10. The demonstrated coincidence can be taken as the definite con
firmation of the correctness and accuracy of the gained numerical solutions. 

The boundary-layer character of the oscillatory flow with a strong constitutive 
non-linearity is more apparent in terms of the stress field, as demonstrated in Figs 5 
and 6. The instantaneous stress profiles near the wall immediately after changing 
thc direction of flow are similar to ones for the start-up flow along the plate ll . This 
picture of flow is radically changed in the moment when the stress signal reaches 
the free surface: the stress profiles become nearly linear and they are changing very 
slowly further on, compare Fig. 5. 

Thc value H = 10 represents certain limit behind which the computations on a 
uniform grid with D Y = 0·5 would consume unacceptable computational time. 
Therefore, the computations for H > 10 have been carried out only by using the BISS
-scheme with the linear extrapolation of the instantaneous stress profiles to the outer 
region,5 = L < Y < H, N = 20, M = 50. The resulting profiles of the instantaneous 
stress amplitudes 

S(Y) = Max IS(Y, T)lo<T<1t (70) 

arc shown in Fig. 7. For the cases H = 20 and H = 40, it is apparent that the bound
ary-layer regime interferes with the outer region and so the condition (42) is not ful
filed. The cases treatable by the presented schemes are limited approximately by the 
condition H ~ 30 if the additional constrains DY ~ 1 (for saving the low discretiza
tion error) and N ~ 20 (for saving the acceptable computational time) are taken into 
consideration. 

I I(i. 7 

Profiles of the stress amplitudes. Full lines 
1, 2, 3 correspond to the cases H = 10, 20, 40 
resp. at n = 0·15. The dashed line 4 corres
ponds to the assumed similarity asymptote, 
S ~ (I + y)-2/(m-l). Full points on the 

curves characterize the actual boundary of 
the outer creeping region, Re*( Y) = 1. 
j, - boundary of the outer region as assumed 
in computations, A - probable boundary of 
the similarity boundary-layer region 
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1256 Wein, Sobolik: 

It seems that this new limit III the numerical study of the non-Newtonian oscillatory 
boundary-layer flows can not be overcome by further improving finite-difference 
methods without introducing an adequate analytic asymptotic theory for 1 ~ Y ~ H. 
It has been suggested quite recently12 to develop such a theory assuming the existence 
of a transient similarity asymptote of the type 

s(y, T) ~ C(T - G(Y)) F(Y) . (71) 

It can be easily found that only single class of the admissible solutions can exist, 
for which 

(72) 

The good agreement of the numerical results with the assumption (71) is apparent 
from Fig. 7. if the choice Yo = 1 is made. This result is useful for the interpretation 
of the numerical results in the form of the estimate of the flow enhancement coeffi
cient, given by Eqs (19), (20). It guarantees for m > 1 that the integral in the Eq. (20) 
is finite and, also, it provides an estimate of its asymptotical behaviour at H ~ 1: 

x(m, H) ~ x(m, (0) _ <IC(T)lm-l> . 
H + 1 

(73) 

The all known numerical data on the flow enhancement at higher H are presented 
in Fig. 8. The agreement between the asymptotical prediction by the formula (68) 
and the numerical data can be attained either by adjusting the value x( m, (0) empi
rically or by determining it as the arithmetical average of the two different analytical 
estimates3 •4 • The deviations from the asymptotical behaviour predicted by the for-

b~----------L---------~O·2 
1J(1 +H) 

FIG. 8 

Resulting estimates of the flow enhancement 
under boundary-layer regime. The inner 
points represent the numerical results deter
mined by using BISS-scheme, the side points 
represent the approximate analytical result. 
Straight lines are fitted empirically. m: 1 6· 7, 
2 4·0, 3 3·0, 4 2·0 
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Non-Newtonian Oscillatory Boundary Layer 1257 

mula (68) can be attributed to the interference of the boundary-layer and creeping 
zones of flow, i.e. to the improper choice of the interface boundary, Y = L, for the 
linear extrapolation of the stress profiles. 

CONCLUSION 

The earlier numerical solutions to the problem of non-Newtonian oscillatory flows 
based on the formulation in velocities did not gave a chance to a quantitative testing 
of accuracy of the results. The presented novel finite-difference methods based on 
the integro-differential formulation in stresses give the results of the excellent and 
guarranted accuracy but they are rather cumbersome in view of the necessary com
putational time. The comparison of the old and new results has shown that the earlier 
numerical solutions gave also accurate data on the most important macroscopic 
parameters, e.g. the flow enhancement. 

The resulting numerical estimates of the flow enhancement at the high but finite 
values of the modified Reynolds number, H = 10, are compatible with the former 
analytical estimates at H = 00. 

LIST OF SYMBOLS 

aw2 = max lu(t)1 
A = -u/(aw2 ) 

DT c= 21[/(21\11 + I) 

DY= L/(N- I) 
E 
Fr af,i/gz 

g, 

II 
II c h/08 

IIY,IIL 

j 

k 

L 

m == 1/11 
n 

!vi 

N 

Q 
Re' 
S = Tyz/O"fj 

sj 
I 

T= WI 

Ti 

maximum acceleration of the oscillating plate 
normalized acceleration of the oscillating plate 
step on the time coordinate 
step on the space coordinate 
coefficient of flow enhancement, see Eq. (19) 
Froude number for oscillatory flow 
longitudinal component of gravity acceleration 
thickness of the liquid film on the oscillating plate 
modified Reynolds number for oscillatory flows 
parameters of the quadrature formulas (53), (54) 
sequential index on the time coordinate 
sequential index on the space coordinate 

summation index on the space coordinate 
boundary of the grid region 
reciprocal flow index 
flow index, the parameter of the power-law viscosity function, 
'Z'zy = K[-c\vzt 
number of the mesh points on the time coordinate for the half-period 
number of the mesh points on the space coordinate 
normalized instantaneous volumetric flow rate, see Eq. (45) 
local Reynolds number, see Eq. (42) 
normalized stress 
values of S(Y, T) in the mesh points 
time 
normalized time 
mesh point value of T 
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1258 Wein, Sobolik 

l/(t) instantaneous velocity of the oscillating plate 
/', velocity of liquid 
I' = ['z/(aw) normalized velocity of liquid 
I} values of V( Y, T) in the mesh points 
'0 = II/(aw) normalized velocity of the oscillating plate 
Il' k Simpson's coefficients, Eq. (58) 
y distance from the plate 
Y = yloB normalized distance from the plate 
Yj mesh point value of Y 
~;, D TID Y 1 + n inertia parameter for the finite-difference schemes in velocities 
/i c~ ! DTID y2 inertia parameter for the finite-difference schemes in stresses 
clB = (Km(! - ma- m + 1 W - 2m + 1 )1/(1 + m), characteristic thickness of the oscillatory boundary-layer 
I;j t error parameter, Eq, (68) 
op 

c~ 
,,/\ 

I;~I 

I;E 

boundary deviation from the periodicity condition, Eq. (24a) 

domain deviation from the antiperiodicity condition, Eq. (24c) 

boundary deviation from the antiperiodicity condition, Eq. (24b) 

defect of the macroscopic momentum blaance, Eq. (25) 
defect of the total energy balance, Eq. (26) 

,-(m, H) function defined by Fq. (20) 
T vz instantaneous local shear stress 
':B = (Kmoa2(!?)I/(1 +m), characteristic amplitude of the oscillatory stresses under the boundary

-layer condition 
V'work' ~/djss normalized total work of the oscillatory plate, normalized viscous dissi-

pation 
(.) == 21t18, angular frequency of the process with the period 8 
IIBjl1 = max IBjl vector norm 
IIBili = max IB~I matrix norm 

(I( T» = ~ f2n f(T) dT, time mean of the periodic functionf( T) 
21t 0 

[x/ = sign (x) 1.tI P odd power-law function 
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